Journal of Organometallic Chemistry, 206 (1981) C11–C13 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

OXIDATIVE ADDITION OF α -KETOIMIDOYL CHLORIDES TO PALLADIUM(0) AND PLATINUM(0) COMPLEXES

ANTONIO MANTOVANI, GIACOMO FACCHIN,

Cattedre di Chimica, Facoltà di Ingegneria, University of Padova (Italy)

TRISTANO BOSCHI and BRUNO CROCIANI*

Centro Chimica Tecnologia Composti Metallorganici Elementi Transizione C.N.R., Istituto di Chimica Industriale, Via Marzolo, 9 Padova (Italy)

(Received October 13th, 1980)

Summary

The reaction of α -ketoimidoyl chlorides with palladium(0) and platinum(0) derivatives yields trans-[MCl{C(=NR)COMe}(PMe_nPh₃-n)₂] (M = Pd; R = $p-C_6H_4OMe$, $c-C_6H_{11}$, t-Bu; n = 0, 1; M = Pt; R = $p-C_6H_4OMe$; n = 1) and cis-[PtCl{ $C(=N-p-C_6H_4OMe)COMe$ }(OMe)COMe}(PPh_3)_2], which have been characterized by IR, ¹H and ³¹P NMR spectra and by condensation with MeNH₂.

The reactions of imidoyl chlorides with transition metal substrates have been widely used to prepare complexes containing the imidoyl ligands [1-5]. In previous papers we reported that the acid-catalyzed hydrolysis of 1,4-diaza-3-methylbutadiene-2-yl-palladium(II) compounds yields the corresponding α -ketoimidoyl derivatives [6], from which new 1,4-diazadienyl groups with asymmetrically substituted imino nitrogen atoms can be obtained by condensation with primary amines [7]. We have now found a more convenient route to these compounds based on the oxidative addition of α -ketoimidoyl chlorides [8] to palladium(0) complexes (eq. 1).

Attempts to extend reaction 1 to other d^{10} metal complexes, such as $[M(CH_2=CH_2)(PPh_3)_2]$ (M = Ni, Pt), $[PtL_4]$ (L = PPh₃, PMePh₂), $[RhCl(PPh_3)_3]$, $[M'Cl(CO)(PPh_3)_2]$ (M' = Rh, Ir), have been successful only for platinum(0) derivatives and for R = $p-C_6H_4OMe$ (eq. 2).

0022-328X/81/0000-0000/\$ 02.50, © 1981, Elsevier Sequoia S.A.

All the complexes I–VI give satisfactory elemental analyses and are monomeric in 1,2-dichloroethane. The $\nu(C=O)$ and $\nu(C=N)$ bands of the α -ketoimidoyl chlorides (1728–1723 and 1666–1638 cm⁻¹ in benzene solution, respectively) are shifted to lower frequencies [ca. 40–50 cm⁻¹ for $\nu(C=O)$ and ca. 70–90 cm⁻¹ for $\nu(C=N)$] in the corresponding metal derivatives I–VI.

The ³¹P NMR signals appear as a singlet for I—III (CD₂Cl₂ solution: I 40.06, II 37.38, III 41.75 ppm down-field from external PEt₃) and as a singlet flanked by ¹⁹⁵Pt satellites for VI [24.06 ppm, ¹J(Pt—P) = 3037 Hz]. In the ¹H NMR spectra (CD₂Cl₂ solution) the δ (PMe) signals occur as a triplet at 1.89 ppm for IV [²J(P—H) + ⁴J(P'—H) = 6.8 Hz] and as a triplet with ¹⁹⁵Pt satellites at 2.02 ppm for VI [²J(P—H) + ⁴J(P'—H) = 7.0 Hz, ³J(Pt—H) = 31.4 Hz]. These results indicate a *trans* configuration for I—IV and VI and the

presence of a plane of symmetry perpendicular to the coordination plane across the Cl-M-C_{imidov} unit. Although a time-averaged plane of symmetry might be generated by a fast rotation (on the NMR time scale) around the M-C_{imidovl} bond, steric and electronic factors suggest a configuration of type A, with a planar O=C-C=N conjugated unit, analogous to the structure of the related compound trans-[PdCl{(C=NR)C(Me)=NR}(PPh₃)₂] (R = *p*-C₆H₄OMe) [9]:

M = Pt, $L = PMePh_{2}$)

This configuration would also account for the down-field shift of the ortho protons of the Np-C₆ H_4OMe group, resulting from the deshielding effect of the metal atom in close proximity (I $\delta = 7.60-7.75$ ppm; IV 7.65-7.80 ppm; VI 7.70-7.85 ppm) and for the high-field shift of the methyl protons of the COMe group, due to the shielding effect of the phenyl ring current of two mutually trans PPh₃ ligands (I $\delta = 1.34$ ppm; II 1.23 ppm; III 1.31 ppm) [9].

When a PPh₃-platinum(0) substrate is used in reaction 2, a cis product V is obtained, as shown by its ³¹P NMR spectrum in CD₂Cl₂ ($\delta = 32.09$ ppm, ${}^{1}J(\text{Pt}-\text{P}) = 4504 \text{ Hz}$, for P trans to chlorine; $\delta = 37.60 \text{ ppm}$, ${}^{1}J(\text{Pt}-\text{P}) =$ 1729 Hz, for P trans to carbon, ${}^{2}J(P-P') = 17.1$ Hz). The different geometry of complexes V and VI is also reflected in the different ν (Pt-Cl) values, 295 and 270 $\rm cm^{-1}$, respectively, resulting from the higher *trans*-influence of the α -ketoimidoyl group compared to PPh₃. Accordingly, in the trans complexes I-IV in the ν (Pd-Cl) band was found in the low frequency range $270-250 \text{ cm}^{-1}$.

The compounds I and III undergo condensation reaction at the carbonyl group by MeNH₂ to give the 1,4-diazadienyl derivatives trans-[PdCl- $\{\dot{C}(=NR)\dot{C}(Me)=NMe\}(PPh_3)_2\}$ (R = p-C₆H₄OMe, c-C₆H₁₁) [7]. We are now studying this condensation reaction with the platinum complexes V and VI, and the reaction of α -ketoimidovl chlorides with some metal carbonyl anions.

References

- 1 M.J. Doyle, M.F. Lappert, G.M. McLaughlin and J. McMeeking, J. Chem. Soc., Dalton, (1974) 1494.
- 2 R.D. Adams, D.F. Chodosh and N.M. Golembeski, J. Organometal. Chem., 139 (1977) C39. 3 H. Alper, M. Tanaka and K. Hachem, J. Organometal. Chem., 190 (1980) 95, and references cited
- therein. 4
- F. Porta, S. Cenini, P. Del Buttero and S. Maiorana, J. Organometal. Chem., 194 (1980) 211.
- K. Hiraki, Y. Fuchita and T. Masumoto, Bull. Chem. Soc. Jpn., 53 (1980) 1171. 5
- B. Crociani, Inorg. Chim. Acta, 23 (1977) L1. 6
- B. Crociani and R.L. Richards, J. Organometal, Chem., 154 (1978) 65. 7
- 8 I. Ugi and U. Fetzer, Chem. Ber., 94 (1961) 1116.
- B. Crociani, G. Bandoli and D.A. Clemente, J. Orgenometal. Chem., 184 (1980) 269. 9